EF-G or elongation factor G (historically known as translocase) is one of the prokaryotic elongation factors.
Contents |
The factor EF-G catalyzes the translocation of the tRNA and mRNA down the ribosome at the end of each round of polypeptide elongation. Homologous to EF-Tu + tRNA, EF-G also binds to the ribosome in its GTP-bound state. When it associates with the A site, EF-G causes the tRNA previously occupying that site to occupy an intermediate A/P position (bound to the A site of the small ribosomal subunit and to the P site of the large subunit), and the tRNA in the P site is shifted to a P/E hybrid state. EF-G hydrolysis of GTP causes a conformation change that forces the A/P tRNA to fully occupy the P site, the P/E tRNA to fully occupy the E site (and exit the ribosome complex), and the mRNA to shift three nucleotides down relative to the ribosome due to its association with these tRNA molecules. The GDP-bound EF-G molecule then dissociates from the complex, leaving another free A-site where the elongation cycle can start again.
Apart from its role in translocation, EF-G, working together with Ribosome Recycling Factor promotes ribosome recycling in a GTP-dependent manner [1].
It is normally inhibited by fusidic acid, but resistance has emerged.[2][3]
EF-G has a complex evolutionary history, with numerous paralogous versions of the factor present in bacteria, suggesting subfunctionalization of different EF-G variants [4].
|
|